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Abstract

Based on the construction of bivariate fractal interpolation surfaces, we introduce closed spherical fractal
interpolation surfaces. The interpolation takes place in spherical coordinates and with the transformation to
Cartesian coordinates a closed surface arises. We give conditions for this construction to be valid and state
some useful relations about the Hausdorff and the Box counting dimension of the closed surface.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Fractal surfaces have gained widespread consideration in scientific areas such as metallurgy,
physics, image processing, computer graphics, etc. Massopust [10,11] was the first who consid-
ered self-affine fractal interpolation surfaces (FISs) on triangular domains in the special case,
where the interpolation points on the boundary of the domain are coplanar. This construction,
however, lacks the flexibility which is most necessary in modelling complex surfaces. Thus,
Geronimo and Hardin [8] generalized this construction to allow more general boundary data.
Zhao [16], gave an even more general construction which involved affine and nonaffine FIS with
arbitrarily selected contraction factors on triangular domains. Both constructions used consis-
tent triangulations to overcome the problems arising when noncoplanar boundary data are used.
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A few years later Xie and Sun [14,15] used bivariate functions on rectangular grids with arbitrary
contraction factors and without any condition on the boundary points. They used their studies to
model rock surfaces. Their construction led to attractors that are not (in general) graphs of con-
tinuous functions as Dalla in [5] demonstrated. She used colinear boundary data and proved that
in this case the attractor is a continuous surface. Malysz in [9] presented a construction that gen-
eralized Dalla’s approach, using arbitrary boundary data, but he used the same contraction factors
for each map of the iterated function system.

Nevertheless, all the constructions mentioned above lead to self-similar attractors, which
means that any small part of the surface looks like the whole. A more general approach was intro-
duced in [2], where recurrent iterated function systems (RIFS) were used to address the problem
and the box-counting dimension of the constructed surfaces was computed. This method is flex-
ible enough to allow its use in the approximation of any natural surface. In particular, in [3] this
method is used in image compression.

In this paper we use the theory presented in [2] to construct closed fractal interpolation sur-
faces. We give the conditions needed for this construction and prove some theorems about their
Hausdorff and box-counting dimension.

2. Fractal interpolation surfaces on rectangular grids

Let X = [0,1] × [0,p] × R and Δ = {(xi, yj , zij ): i = 0,1, . . . ,N; j = 0,1, . . . ,M} be
an interpolating set with (N + 1) × (M + 1) interpolation points such that x0 = 0, xN = 1,
xi − xi−1 = δ, y0 = 0, yN = p, yi − yi−1 = δ, where δ ∈ (0,1) and M,N ∈ N, M = pN , p ∈
N. Furthermore, consider a subset of Δ, Q = {(x̂i , ŷj , ẑij ): i = 0,1, . . . ,K; j = 0,1, . . . ,L},
consisting of (K +1)× (L+1) points, such that x̂0 = 0, x̂N = 1, x̂i − x̂i−1 = ψ , ŷ0 = 0, ŷN = p,
ŷi − ŷi−1 = ψ , where ψ = aδ, a ∈ N and K,L ∈ N, L = pK . We will define a recurrent iterated
function system (RIFS) associated with the set of data Δ and the set Q.

We will use mappings of the form

wij

(
x

y

z

)
=

(
aij x + bij

cij y + dij

eij x + fij y + gij xy + sij z + kij

)
=

(
φij (x)

ψij (y)

Fij (x, y, z)

)
(1)

which are called bivariate maps. Define the function Tij by

Tij

(
x

y

)
=

(
aij x + bij

cij y + dij

)
=

(
φij (x)

ψij (y)

)
, (2)

so as wij = (Tij ,Fij ). If the vertical scaling factors obey |sij | < 1, then there is a metric d

on X equivalent to the Euclidean metric, such that wij is a contraction with respect to d (i.e.,
∃ŝij : 0 � ŝij < 1: d(wij (x̄),wij (ȳ)) � ŝij d(x̄, ȳ), ∀x̄, ȳ ∈ X). One such metric d is given by
(see [2,5]):

d
(
(x1, y1, z1), (x2, y2, z2)

) = |x1 − x2| + |y1 − y2| + θ |z1 − z2|,
where

θ = min

{
mini,j {1 − aij }

maxi,j {2(|eij | + p|gij |)} ,
mini,j {1 − cij }

maxi,j {2(|fij | + |gij |)}
}
.

The number sij is often called the contraction factor or the vertical scaling factor of the map wij .
The interpolation points divide [0,1] × [0,p] into N · M rectangles Iij = [xi−1, xi] ×

[yj−1, yj ], i = 1, . . . ,N and j = 1, . . . ,M , which we call sections, while the points of Q divide
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[0,1] × [0,p] to K · L rectangles Jkl = [x̂k−1, x̂k] × [ŷl−1, ŷl], k = 1, . . . ,K and l = 1, . . . ,L

which we simply call intervals. The number

a = ψ

δ
= N

K
,

the square of which expresses how many sections lie inside any interval, is an integer greater
than one.

Furthermore, let J be a labelling map such that

J : {1,2, . . . ,N} × {1,2, . . . ,M} → {1,2, . . . ,K} × {1,2, . . . ,L}
with J(i, j) = (k, l). The mappings wij :X → X are constrained by the data according to

wij

(
x̂k−1
ŷl−1

ẑk−1,l−1

)
=

(
xi−1
yj−1

zi−1,j−1

)
, wij

(
x̂k

ŷl−1
ẑk,l−1

)
=

(
xi

yj−1
zi,j−1

)
,

wij

(
x̂k−1
ŷl

ẑk−1,l

)
=

(
xi−1
yj

zi−1,j

)
and wij

(
x̂l

ŷl

ẑkl

)
=

(
xi

yj

zi,j

)
(3)

for i = 1, . . . ,N and j = 1, . . . ,M . The functions wij map the vertices of the interval Jkl =
JJ(i,j) onto the vertices of the section Iij . One can solve Eq. (3) and express aij , bij , cij , dij , gij ,
eij , fij , kij in terms of the coordinates of the interpolation points and the contraction factor sij
(see [2,5]).

Finally, let Φ(i, j) = (i − 1)M + j, i = 1, . . . ,N and j = 1, . . . ,M , (then Φ−1(n) =
((n − 1)divM + 1, (n − 1) mod M + 1), n = 1, . . . ,N · M) be an enumeration of the set
{(i, j): i = 1, . . . ,N; j = 1, . . . ,M}. The NM × NM stochastic matrix P = (pnm) is defined
by

pnm =
{ 1

a2 , if IΦ−1(n) ⊆ JJ(Φ−1(m)),

0, otherwise.
The RIFS is described as the IFS {X,w1−N,1−M} together with the stochastic matrix P . It has

a unique attractor A = limk→∞ Wk(A0) for every starting set A0 ∈H(X), where

W(A) =
N,M⋃

i=1,j=1

wi,j (A),

Wk = W ◦ W ◦ · · · ◦ W andH(X) denotes the space whose points are the compact subsets of X,
other than the empty set (see [1]). If this unique compact set A is the graph of a continuous
function f : [0,1] × [0,p] → R, then it is called a fractal interpolation surface (or FIS for short).
The following proposition gives conditions that are needed to construct such a surface. Its proof
and more general results may be found in [2].

Proposition 1. With the same notation as above, assume that for every interval Jkl, k =
1,2, . . . ,K, l = 1,2, . . . ,L, the points of each of the sets{

(x(k−1)a = x̂k−1, y(l−1)a+ν, z(k−1)a,(l−1)a+ν): ν = 0,1,2, . . . , a
}
,{

(xka = x̂k, y(l−1)a+ν, zka,(l−1)a+ν): ν = 0,1,2, . . . , a
}
,{

(x(k−1)a+ν, y(l−1)a = yl−1, z(k−1)a+ν,(l−1)a): ν = 0,1,2, . . . , a
}
,{

(x(k−1)a+ν, yla = yl, z(k−1)a+ν,la): ν = 0,1,2, . . . , a
}
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are collinear. Then there exists a continuous function f : [0,1] × [0,p] → R that interpo-
lates the given data Δ = {(xi, yj , zij ): i = 1,2, . . . ,N, j = 1,2, . . . ,M} and its graph
{(x, y, f (x, y)): (x, y) ∈ [0,1] × [0,p]} is the attractor A of the RIFS.

In this case one can compute the box-counting dimension of the attractor. We define the con-
nection matrix of the respective RIFS as

Cnm =
{

1, if pmn > 0,

0, if pmn = 0,

where n,m = 1,2, . . . ,N · M . If the matrix P is irreducible, then C is irreducible and the fol-
lowing theorem applies.

Theorem 1. Let the RIFS be defined as above with irreducible connection matrix C. Let S be the
N · M × N · M diagonal matrix

S = diag
(|s11|, |s12|, . . . , |s1M |, |s21|, |s22|, . . . , |s2M |, . . . , |sN1|, |sN2|, . . . , |sNM |)

with 0 < |sij | < 1, i = 1, . . . ,N , j = 1, . . . ,M . Suppose that the attractor A of the RIFS is the
graph of a continuous function f, that interpolates Δ and that the interpolation points of every
interval are not x-collinear or are not y-collinear. The box counting dimension of A is given by

D(A) =
{

1 + loga λ, if λ > a,

2, if λ � a,

where λ = ρ(SC) > 0, the spectral radius of the irreducible matrix S · C.

We call the points of Δ x-collinear iff all the points with the same x coordinate are collinear.
Similarly, we call the points of Δ y-collinear iff all the points with the same y coordinate are
collinear. The proof of Theorem 1 is given in [2]. In Fig. 1 two FISs are shown. In both cases the
interpolation points satisfy the conditions of Proposition 1.

One can use this construction to approximate any given surface. We choose δ and ψ a priori,
pick some points of the surface (forming a rectangular grid as described above) and construct the
interpolation set Δ and the set Q. Then, for each section Iij we compute the interval Jkl (where
(k, l) = J(i, j)) and the contraction factor sij (thus we form the map wij ) that are “best mapped”
(through wij ) to Iij . Storing the interpolation points and the parameters describing the RIFS we
formed, we are able to reconstruct a fractal set which approximates the original surface. Details
on this algorithm can be found in [3] where this method was used to approximate images with
very good results (there the coordinate z gives the gray level at each point (x, y)). We were able
to compress pictures by a factor of 70 without significant loss of the quality of the reconstructed
(fractal) image.

3. Parameter identification problem

In many cases one must ensure that the attractor of an IFS or RIFS is contained in a given
rectangle R. For example, in image compression, the surface should not take negative values.
In [4] and [13] this problem is examined in the case of the affine fractal interpolation functions.
Here, we give conditions on the contraction factors ensuring that the attractor of the RIFS defined
in Section 2 is contained in R.
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(a) (b)

Fig. 1. Two fractal surfaces that interpolate given points. In both cases 9 × 9 interpolation points were used.

Theorem 2. Consider the RIFS defined in Section 2. The graph of the attractor of this RIFS
remains within a given parallelepiped R = [0,1] × [0,p] × [a, b] (Δ ⊂ R) if the contraction
factors obey

smin
ij � sij � smax

ij ,

where

smax
ij = min

{ b−zi−1,j−1
b−ẑk−1,l−1

,
b−zi−1,j

b−ẑk−1,l
,

b−zi,j−1
b−ẑk,l−1

b−zi,j

b−ẑk,l
,

a−zi−1,j−1
a−ẑk−1,l−1

,
a−zi−1,j

a−ẑk−1,l
,

a−zi,j−1
a−ẑk,l−1

,
a−zi,j

a−ẑk,l

}
,

smin
ij = max

{ b−zi−1,j−1
a−ẑk−1,l−1

,
b−zi−1,j

a−ẑk−1,l
,

b−zi,j−1
a−ẑk,l−1

,
b−zi,j

a−ẑk,l
,

a−zi−1,j−1
b−ẑk−1,l−1

,
a−zi−1,j

b−ẑk−1,l
,

a−zi,j−1
b−ẑk,l−1

,
a−zi,j

b−ẑk,l

}
,

and (k, l) = J(i, j), i = 1,2, . . . ,N , j = 1,2, . . . ,M , for all nonzero denominators.

Proof. The proof is similar to the one found in [4]. Consider the function

Fij (x, y, z) = eij x + fij y + gij xy + sij z + kij

defined on the parallelepiped Rkl = [xk−1, xk] × [yl−1, yl] × [a, b], where (k, l) = J(i, j). If one
fixes two of the variables of this function and considers the function defined on a closed subset
of R, the graph will be a line segment. Therefore, Fij attains its maximum and minimum values at
the vertices of Rkl . The eight vertices of Rkl may be written as (xk+μ,yl+ν, a) or (xk+μ,yl+ν, b),
μ,ν = −1,0. We select the contraction factors sij such that

a � Fij (xk+μ,yl+ν, a) � b

a � Fij (xk+μ,yl+ν, b) � b

}

⇒ a � eij xk+μ + fij yl+ν + gij xk+μyl+ν + sij a + kij � b

a � eij xk+μ + fij yl+ν + gij xk+μyl+ν + sij b + kij � b

}

⇒
a � eij xk+μ + fij yl+ν + gij xk+μyl+ν + sij a + kij

+ sij ẑk+μ,l+ν − sij ẑk+μ,l+ν � b

a � eij xk+μ + fij yl+ν + gij xk+μyl+ν + sij b + kij

+ sij ẑk+μ,l+ν − sij ẑk+μ,l+ν � b

⎫⎪⎬
⎪⎭

by(3)⇒ a � zi+μ,j+ν + sij a − sij ẑk+μ,l+ν � b

a � zi+μ,j+ν + sij b − sij ẑk+μ,l+ν � b

}
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⇒ a − zi+μ,j+ν � sij (a − ẑk+μ,l+ν) � b − zi+μ,j+ν

a − zi+μ,j+ν � sij (b − ẑk+μ,l+ν) � b − zi+μ,j+ν

}

⇒
a−zi+μ,j+ν

a−ẑk+μ,l+ν
� sij � b−zi+μ,j+ν

a−ẑk+μ,l+ν

a−zi+μ,j+ν

b−ẑk+μ,l+ν
� sij � b−zi+μ,j+ν

b−ẑk+μ,l+ν

}
,

for μ,ν = −1,0 and nonzero denominators, thus we have the result. �
4. Closed spherical fractal interpolation surfaces

A well-known (and in many areas useful) system of coordinates are the spherical coordinates.
This system is ideal for describing positions on a sphere or spheroid. We let

0 � θ < 2π, −π

2
� φ � π

2
, r > 0,

and define g = (g1, g2, g3) to be the transformation from spherical coordinates to Cartesian co-
ordinates, where

x = g1(θ,φ, r) = r cosφ cos θ,

y = g2(θ,φ, r) = r cosφ sin θ,

z = g3(θ,φ, r) = r sinφ.

We can construct a closed fractal surface using the next theorem.

Theorem 3. Consider a set of equidistant interpolation points

ΔS = {
(θi, φj , rij ): i = 0,1, . . . ,N; j = 0,1, . . . ,M

}
given in spherical coordinates, such that θ0 = 0, θN = 2π , θi − θi−1 = δ, φ0 = −π

2 , φM = π
2 ,

φj − φj−1 = δ. Consider, also, QS ⊂ ΔS = {(θ̂k, φ̂l , r̂kl): k = 0,1, . . . ,K; l = 0,1, . . . ,L} such
that θ̂0 = 0, θ̂N = 2π , θ̂i − θ̂i−1 = ψ , φ̂0 = −π

2 , φ̂M = π
2 , φ̂j − φ̂j−1 = ψ and a labelling map J

as defined in Section 2. Let G be the graph of the function r(θ,φ) which arises as the attractor
of this RIFS. Then g(G) is a continuous closed fractal interpolation surface if and only if the
following conditions apply:

(1) ri,0 = ri,M = R, i = 0,1, . . . ,N .
(2) r0,j = rN,j , j = 0,1, . . . ,M .
(3) The contraction factors are chosen such that G ⊂ [0,2π] × [−π

2 , π
2 ] × [ε,+∞), for given

ε > 0.

Proof. The proof is straightforward. That G is a continuous surface has been shown in [2].
The first condition ensures that the boundaries of this surface (for φ = −π

2 and φ = π
2 ) are line

segments, parallel to the θφ plane. This is necessary, because g maps these boundaries to two
single points. Every point with φ = −π

2 is mapped to the south pole and every point with φ = π
2

is mapped to the north pole. Condition (2) ensures (see [2]) that the other two boundaries will be
symmetric, with respect to the plane θ = π , thus they will fit together after the application of g.
The last condition ensures that r > 0. Considering that g is a continuous function, one can easily
get that g(G) is a continuous closed fractal interpolation surface. �
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Fig. 2. For this closed surface 5 × 5 interpolation points were used. The interpolation points and the other parameters of
the RIFS satisfy the conditions of Theorem 3.

Corollary 1. Consider the RIFS defined in Theorem 3 satisfying all the specified conditions. The
application of the transformation h = (h1, h2, h3), where

x = h1(θ,φ, r) = â · r cosφ cos θ,

y = h2(θ,φ, r) = b̂ · r cosφ sin θ,

z = h3(θ,φ, r) = ĉ · r sinφ,

with â, b̂, ĉ > 0, will yield a continuous closed fractal interpolation surface.

In Figs. 2–5 we give some examples of closed FISs using either g or h as indicated.

5. Dimension of closed spherical FIS

In this section we will prove that the new closed spherical FIS Ĝ = g(G) has the same
Hausdorff dimension (dimH) as G. We also prove some useful inequalities for the box-counting
dimension (dimB). First we need the following lemma.

Lemma 1. Let f : Rn → Rm be a Lipschitz continuous function and G ⊂ Rn; then

dimH f (G) � dimH G, dimB f (G) � dimB G.

(See, for example, [7, p. 30].)

Lemma 2. The Hausdorff dimension is countably stable, that is

dimH

∞⋃
i=1

Ei = sup
1�i<∞

dimH Ei,

where Ei ⊂ Rn.

(See, for example, [6, p. 24] or [12, p. 59].)
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(a) (b)

Fig. 3. The surface of Fig. 2(a) (in spherical coordinates) is transformed through g (in (a)) and h (in (b)) (in Cartesian
coordinates) with â = 1, b̂ = 1, ĉ = 1.5 into a closed fractal interpolation surface.

(a) (b)

Fig. 4. The fractal surface (a) (spherical coordinates) interpolates 9 × 9 points and it is transformed through g into a
closed fractal interpolation surface (b) (Cartesian coordinates).

Fig. 5. Another closed fractal interpolation surface (9 × 9 interpolation points).
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Theorem 4. Let G and Ĝ = g(G) denote the graph of the FIS and the closed spherical FIS,
respectively, as described in Theorem 3. Then

dimH G = dimH Ĝ.

Proof. Suppose that r(θ,φ), (θ,φ) ∈ [0,2π]×[−π
2 , π

2 ] is the continuous function with graph G

and a, b are its minimum and maximum values. We define Bn = [0,2π] × [−π
2 + 1

n
, π

2 − 1
n
] ×

[a, b] and

gn :Bn → R
3

the restriction of g on Bn, which is Lipschitz continuous. Now, let Ĝn = gn(G) and Ĝ
(ν)
n be

the intersection of gn(G) with the νth octant, ν = 1,2, . . . ,8. From the construction of G (con-
dition 3 of Theorem 3), we have that x + y + z � a, for (x, y, z) ∈ Ĝ

(1)
n , thus the convex hull

Sn = conv(Ĝ
(1)
n ) is a convex and compact set which does not contain the origin. The function g−1

n

is well defined on Sn and it has all the partial derivatives continuous (thus bounded) on Sn. Us-
ing the Mean Value Theorem we deduce that g−1

n is a Lipschitz continuous function also. Thus
(Lemma 1),

dimH Ĝ(1)
n = dimH

(
G ∩

([
0,

π

2

]
×

[
0,

π

2
− 1

n

)
× [a, b]

))
.

Proceeding similarly we attain analogous relations for the other octants. Hence,

dimH Ĝn = dimH
(
gn(G)

) = dimH (G ∩ Bn). (4)

Therefore,

dimH G = dimH

( ∞⋃
n=1

(G ∩ Bn) ∪
{
r

(
θ,±π

2

)
, θ ∈ [0,2π]

})

= dimH

( ∞⋃
n=1

(G ∩ Bn)

)

= sup
{
dimH(G ∩ Bn), n ∈ N

}
(by Lemma 2)

= sup
{
dimH gn(G), n ∈ N

} (
by (4)

)
= dimH

( ∞⋃
n=1

gn(G)

)
(by Lemma2)

= dimH

( ∞⋃
n=1

Ĝn ∪
{(

0,0, r

(
0,

π

2

))
,

(
0,0, r

(
0,−π

2

))})

= dimH Ĝ. �
Remark 1. Any other “countably stable” dimension (like the packing dimension, see [12, p. 81])
satisfies, also, Theorem 4.

Remark 2. For the box-counting dimension, which is not countably stable, we have that

dimB(G ∩ Bn) = dimB Ĝn, for any n ∈ N and

sup
{
dimB(G ∩ Bn): n ∈ N

}
� dimB Ĝ = dimB g(G) � dimB G.
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6. Approximating closed surfaces with FIS

In the above sections we described in detail the construction of closed spherical FISs that
emerge from FIS through a change of coordinates. Here, we address the problem of approxima-
tion of a given closed surface (e.g., the surface of planets, comets, rocks).

We consider a natural closed surface Ĝ, which is described by a parametrization r = r(θ,φ)

in spherical coordinates and we write rS = r(θ,−π
2 ) and rN = r(θ, π

2 ), ∀θ ∈ [0,2π], for
the south and the north pole of the surface. Thus we have a continuous surface defined on
[0,2π]×[−π

2 , π
2 ]×(0,+∞), which we can approximate using fractal interpolation as described

in Section 2.
We construct a grid of N × M interpolation points as follows:

θ0 = 0, θN = 2π, θi − θi−1 = δ, for i = 1,2, . . . ,N,

φ0 = −π

2
, φM = π

2
, φj − φj−1 = ψ, for j = 1,2, . . . ,M,

ri,j = r(θi, φj ), for i = 0,1, . . . ,N − 1; j = 1,2, . . . ,M − 1,

ri,0 = rS, i = 0,1, . . . ,N,

ri,M = rN , i = 0,1, . . . ,N, and

rN,j = r0,j , j = 1,2, . . . ,M − 1.

Some minor modifications of the algorithm described in [3] are needed so that the emerging
RIFS will obey the conditions of Theorem 3. In addition, the contraction factors must satisfy
the conditions of Theorem 2, so that the surface remains within a given rectangle where r > 0.
Therefore the attractor G of the RIFS will be the graph of a function that interpolates the above
points and g(G) will approximate the original surface Ĝ.
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